Information Theory, Inference and Learning Algorithms

by David J. C. MacKay
Author(s):David J. C. MacKay
Language: English
Publisher: Cambridge University Press
Published Date: 6 October, 2003
ISBN: 978-0521642989
Total Pages: 640

About the book Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms is a COMPUTER ENGINEERING book which was published by Cambridge University Press on 6 October, 2003 . David J. C. MacKay is the author of this book. This book is written in English and has 640 number of pages.

Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. financial engineering, and machine learning. Information Theory, Inference and Learning Algorithmsbook introduces Information theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology.


You can read or download the book Information Theory, Inference and Learning Algorithms from the following links.


You can buy, review or give ratings for this book at the following links: